Performance Analysis Of Regularized Linear Regression Models For Oxazolines And Oxazoles Derivitive Descriptor Dataset
نویسندگان
چکیده
Regularized regression techniques for linear regression have been created the last few ten years to reduce the flaws of ordinary least squares regression with regard to prediction accuracy. In this paper, new methods for using regularized regression in model choice are introduced, and we distinguish the conditions in which regularized regression develops our ability to discriminate models. We applied all the five methods that use penalty-based (regularization) shrinkage to handle Oxazolines and Oxazoles derivatives descriptor dataset with far more predictors than observations. The lasso, ridge, elasticnet, lars and relaxed lasso further possess the desirable property that they simultaneously select relevant predictive descriptors and optimally estimate their effects. Here, we comparatively evaluate the performance of five regularized linear regression methods The assessment of the performance of each model by means of benchmark experiments is an established exercise. Cross-validation and resampling methods are generally used to arrive point evaluates the efficiencies which are compared to recognize methods with acceptable features. Predictive accuracy was evaluated using the root mean squared error (RMSE) and Square of usual correlation between predictors and observed mean inhibitory concentration of antitubercular activity (R square). We found that all five regularized regression models were able to produce feasible models and efficient capturing the linearity in the data. The elastic net and lars had similar accuracies as well as lasso and relaxed lasso had similar accuracies but outperformed ridge regression in terms of the RMSE and R square metrics.
منابع مشابه
Performance Analysis Of Neural Network Models For Oxazolines And Oxazoles Derivatives Descriptor Dataset
Neural networks have been used successfully to a broad range of areas such as business, data mining, drug discovery and biology. In medicine, neural networks have been applied widely in medical diagnosis, detection and evaluation of new drugs and treatment cost estimation. In addition, neural networks have begin practice in data mining strategies for the aim of prediction, knowledge discovery. ...
متن کاملStudy Of E-Smooth Support Vector Regression And Comparison With E- Support Vector Regression And Potential Support Vector Machines For Prediction For The Antitubercular Activity Of Oxazolines And Oxazoles Derivatives
A new smoothing method for solving ε -support vector regression (ε-SVR), tolerating a small error in fitting a given data sets nonlinearly is proposed in this study. Which is a smooth unconstrained optimization reformulation of the traditional linear programming associated with a ε-insensitive support vector regression. We term this redeveloped problem as ε-smooth support vector regression (ε-S...
متن کاملIdentification Of Outliers In Oxazolines AND Oxazoles High Dimension Molecular Descriptor Dataset Using Principal Component Outlier Detection Algorithm And Comparative Numerical Study Of Other Robust Estimators
From the past decade outlier detection has been in use. Detection of outliers is an emerging topic and is having robust applications in medical sciences and pharmaceutical sciences. Outlier detection is used to detect anomalous behaviour of data. Typical problems in Bioinformatics can be addressed by outlier detection. A computationally fast method for detecting outliers is shown, that is parti...
متن کاملNon linear Prediction of Antitubercular Activity Of Oxazolines and Oxazoles derivatives Making Use of Compact TS-Fuzzy models Through Clustering with orthogonal least sqaure technique and Fuzzy identification system
The prediction of uncertain and predictive nonlinear systems is an important and challenging problem. Fuzzy logic models are often a good choice to describe such systems, however in many cases these become complex soon. commonlly, too less effort is put into descriptor selection and in the creation of suitable local rules. Moreover, in common no model reduction is applied, while this may analyz...
متن کاملQuantitative Structure-Activity Relationship Study on Thiosemicarbazone Derivatives as Antitubercular agents Using Artificial Neural Network and Multiple Linear Regression
Background and purpose: Nonlinear analysis methods for quantitative structure–activity relationship (QSAR) studies better describe molecular behaviors, than linear analysis. Artificial neural networks are mathematical models and algorithms which imitate the information process and learning of human brain. Some S-alkyl derivatives of thiosemicarbazone are shown to be beneficial in prevention and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1312.2789 شماره
صفحات -
تاریخ انتشار 2013